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Abstract
Defining the stability criteria for biaxially strained Ni, we show that the body-
centred tetragonal (bct) Ni structure is not stable on an Au(001) substrate and
changes to a face centred cubic (fcc) (110) structure with many stacking faults.
Nevertheless, for a thin film, the bct Ni structure can be stabilized by the
interface stresses. Using the stress at atomic level, the profile of the internal
stresses is given as a function of Ni film thickness.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a previous study [1, 2], we have shown that the crystalline structure of a Ni film changes as
a function of its thickness when it is stacked along the (001) direction between two Au layers.
The nickel is a face-centred cubic (fcc) crystal while:

• for a thickness less than 5 monolayers, the Ni layer is body-centred tetragonal (bct) close
to a body-centred cubic (bcc) structure;

• for a thickness more than 5 monolayers, the Ni layer is hexagonal or 4H (ABAC stacking)
with many stacking faults. The close-packed planes are perpendicular to the interfaces.
This structure tends to become (110) fcc for larger thicknesses.

Our numerical simulations were in agreement with experimental results obtained by x-ray
diffraction or high resolution electron microscopy. Despite a large misfit between Au and Ni
lattice parameters (15.6%), no interface dislocations were found in experiments, even for large
Ni thicknesses.

This paper completes our study using a potential derived from a tight-binding second
moment approximation (TB-SMA). As in the previous paper [1], we restrict our study to the
case of abrupt interfaces, i.e. with no mixing between Au and Ni.

First, we neglect the influence of interfaces and we analyse the stability of the bulk Ni
submitted to a biaxial stress due to the Au(001) substrate. According to the dynamic theory
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of crystal lattices from Born and Huang [3, 4], a crystal of N atoms can be subjected to two
kinds of distortions:

• 3N − 3 internal distortions, that can be described by all the normal coordinates qλ of the
lattice;

• 6 external distortions, that can be considered as the elements of the macroscopic
homogeneous strain tensor η.

The properties of these distortions are described, respectively, by the dynamic matrix D
and the matrix B, called the stiffness matrix or stress–strain matrix.

The crystal is stable with respect to all internal and external distortions if all the eigenvalues,
ω2

λ (i.e. phonon modes), of the dynamic matrix D and all the eigenvalues, Mr (r = 1, . . . , 6),
of the elastic stiffness matrix B are positive [5, 6]. Two basic phase transitions can occur
associated, respectively, with the vanishing of a phonon mode ωλ (soft mode transition) or an
eigenvalueMr of the Bmatrix. In this last case, a ‘spontaneous’ macroscopic distortion occurs,
defined by an eigenvector Lr which is a linear combination of the homogeneous strains ηI .

In this paper, the eigenvalues Mr of the elastic stiffness matrix B are studied to give
the stability criteria for the Ni film which is commensurate with the Au(001) substrate and is
subjected to an external biaxial strain of 15.6% due to the mismatch in lattice parameters. We
will show that a commensurate bct Ni film on a Au(001) substrate is not stable.

After having determined the stability domain of the strained bct Ni films, our second goal
is to study the influence of the Au interfaces on the Ni layer, which is more complex than a
mere biaxial stress. We will describe the atomic stress distribution in the Ni exerted by the
Au(001) film.

Stresses are well defined for a macroscopic solid. The global stresses are the first
derivatives of the energy as a function of the strains applied on the system. On the other
hand, their definition is more subtle for part of a system, such as a monolayer or even an atom.
In 1970, Basinski et al [7, 8] defined a stress tensor at atomic level to study the dislocation
core with a pair potential. Vitek and Egami [9–11] gave a generalized definition of a local
stress tensor that can be calculated for particles interacting through a N-body potential at finite
temperature.

However, this definition has a serious drawback: a chain of atoms of different types at zero
pressure should have no stress located in any part of the chain, because there is no geometrical
constraint to hinder a strained part of the system to expand. Indeed, in one dimension any
stressed part can shrink or expand to release its stress independently of the rest of the system.
The stress definition from Vitek et al does not give a zero value in this case. The same is true
for a stress σzz perpendicular to a free surface that must be zero.

A rigorous but intuitive definition has been given by Lutsko [12] and permits the calculation
of the stresses for any volume inside a system. Nevertheless, to our knowledge, this approach
has never been used. We will give a new expression of the Lutsko definition of the stresses
for any volume up to the atomic level. Then we will calculate the internal stresses for each
monolayer of the Au/Ni multilayer and will show their variations as a function of the thickness
of the Ni layer.

Thus, the plan of this paper is the following. In the first section, after describing briefly the
form of our potential, we define the different elastic quantities which interest us: Lagrangian
strains, global and atomic level stresses and the elastic stiffness matrix B.

In the second section, we study the stability of bulk Ni subjected to a biaxial strain
perpendicular to the (001) direction by calculating the stiffness matrix B. Finally, we study the
internal stresses of Au/Ni multilayers giving their profile with respect to multilayer thickness
and show how a Au interface fixes a few Ni monolayers in the bct structure.
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2. Definitions

2.1. Interatomic potential

We use a semi-empirical potential derived from the TB-SMA (see [1] for more details). The
total potential energy is expressed as

E =
∑
{i, j}

Ai j exp

{
−pi j

(
r i j

r0
−1

)}
−

∑
i

[∑
j

β2
i j exp

{
−2qi j

(
r i j

r0
−1

)}]1/2

(1)

where r0 is the nearest-neighbourdistance, r i j is the distance between atom i and j and Ai j , pi j ,
βi j and qi j are four parameters depending on the nature of the atoms i and j . The sum

∑
{i, j}

is over all pairs {i, j}, i < j . This interatomic potential belongs to the more general form of
the embedding atom method:

E =
∑

i

[∑
j

1
2 �(r i j) + F(ρi )

]
(2)

where �(r i j) is a pair function and F(ρi ) is a function of a local electronic density ρi which is
also expressed as a sum of a pair function V (ri j). Note that this interatomic potential depends
only on the distance between atoms: there is no angular dependence.

2.2. Lagrangian deformations

Under applied stresses, solids change their form and their volume. We define the initial position
of a point of the solid by r0 (with components r0

1 , r0
2 , r0

3 ) and its final position by r. Let us
use the superscript 0 for all quantities of the initial configuration. Therefore a symbol with
superscript 0 is a constant with respect of any deformation, i.e. its derivatives are zero.

A deformation is homogeneous if it is uniform throughout the solid and can be defined
by the nine independent parameters uαβ , the gradients of a displacement vector u from {r0} to
{r}. We form a tensor u with elements uαβ given by

u = r − r0 (3)

uαβ = ∂uα/∂rβ. (4)

To consider finite strains, we use the Lagrangian tensor of strain η with elements

ηαβ = 1

2

(
∂uα

∂rβ

+
∂uβ

∂rα

+
∑

γ

∂uγ

∂rα

∂uγ

∂rβ

)
. (5)

For a rigid rotation, η is zero and, as it is symmetric (ηαβ = ηβα), we use the Voigt notation
defined by

η1 = η11, η2 = η22, η3 = η33

η4 = 2η23, η5 = 2η13, η6 = 2η12.

The energy E can be written as

E({r}) = E({r0},η) (6)

where the Lagrangian strain tensor η describes the variation of lengths in the solid submitted
to a homogeneous deformation. We have a simple relation between r and r0:

r2 − (r0)2 = 2
∑
αβ

r0
αηαβr0

β . (7)
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Relation (7) shows that the derivative of r2 with respect to η does not depend on the final value
r, but only on the initial value r0. Therefore ∂r2/∂ηαβ = 2r0

αr0
β and thus

∂r

∂ηαβ

= ∂r

∂ηI
= r0

αr0
β

r
(8)

where I is (αβ). This relation is used to calculate the second derivatives of r as a function of
ηI in the elastic constant calculation:

∂2r

∂ηI ∂ηJ
= r0

αr0
β

∂(1/r)

∂ηJ
= −r0

αr0
βr0

γ r0
δ

r3
. (9)

We point out that the vector u is not assumed to be infinitesimal; these expressions are exact
for finite homogeneous strains.

2.3. Elastic constants

The elastic constants of order n are defined as the nth derivatives of the energy with respect
to ηI :

CI J ... = 1

V
∂n E

∂ηI ∂ηJ . . .
(10)

where E is the energy and V is the volume of the system. We restrict our discussion to the
zero-temperature case; therefore, E is the potential energy, and not the free energy. The first-
order elastic constants are the components σI of the stress tensor and the second-order ones are
the elastic moduli CI J with I = (αβ) and J = (γ δ). Thus, near the equilibrium, the energy
E can be expanded as

E = E0 + V
[ 6∑

I

σI ηI + 1
2

6∑
I,J

CI J ηI ηJ + · · ·
]
. (11)

As Martin [13, 14] has shown, this expansion of the energy as a function of ηI is only
valid at zero strain for a centrosymmetric crystal (where each atom is a centre of symmetry).
Otherwise, we need to take the internal elastic constants into account. The first derivative of
the energy is written as

∂ E

∂r i j
= �′(r i j) + [F ′(ρi ) + F ′(ρ j )]V ′(r i j) (12)

From this equation and (2), the global stress σI becomes

σI = 1

V
∑
{i, j}

[
�′(r i j) +

1

2

(
1

ρi
+

1

ρ j

)
V ′(r i j)

]
r i j
α r i j

β

r i j
. (13)

In order to calculate the elastic constants from equation (10),we take the second derivatives
of the potential energy. Knowing that r i j depends only on r i j

0 , we have

CI J = 1

V
∑
{i, j}

[∑
{k,l}

∂2 E

∂r i j∂rkl

∂r i j

∂ηI

∂rkl

∂ηJ
+

∂ E

∂r i j

∂2r i j

∂ηI ∂ηJ

]
. (14)

Now we can write the expression of elastic constants as a function of the first and second
derivatives of the energy E using (8) and (9):

CI J = 1

V
∑
{i, j}

∑
{k,l}

[
∂2 E

∂r i j∂rkl
− δ{i, j},{k,l}

1

r i j

∂ E

∂r i j

]
r i j
α r i j

β rkl
γ rkl

δ

r i jr kl
(15)
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where δ{i, j},{k,l} is a Kronecker symbol which is equal to 1 when the pairs {i, j} and {k, l} are
identical. With respect to our interatomic potential, the second derivatives of E are

∂2 E

∂r i j∂rkl
= δ{i, j},{k,l}[�′′(r i j) + {F ′(ρi ) + F ′(ρ j )}V ′′(r i j)]

+ [(δi,k + δi,l)F ′′(ρi ) + (δ j,k + δ j,l
)
F ′′(ρ j )]V

′(r i j)V ′(rkl ). (16)

From expression (10) of CI J , we can write

CI J = 1

V
∑
{i, j}

∑
{k,l}

{
δ{i, j},{k,l}

[
�′′(r i j) − 1

r i j
�′(r i j)

+
(
F ′(ρi ) + F ′(ρ j)

)(
V ′′(r i j) − 1

r i j
V ′(r i j)

)]

+ [(δi,k + δi,l)F ′′(ρi ) + (δ j,k + δ j,l)F ′′(ρ j )]V ′(r i j)V ′(rkl)

}
r i j
α r i j

β rkl
γ rkl

δ

r i jr kl
. (17)

These expressions will be useful to define stability criteria.

2.4. Stresses

The global stresses being the first derivatives of E with respect to ηI , we get from equation (12)
and (13)

σI = 1

V
∑
{i, j}

∂ E

∂r i j

r i j
α r i j

β

r i j
. (18)

For an unconstrained system in equilibrium, the stress tensor σ is zero, otherwise the system
would spontaneously distort. In order to define a local stress quantity, we introduce the partial
force F i j which the atom j exerts on atom i as

F i j = −∇ri j E = − ∂ E

∂r i j

ri j

r i j
. (19)

Thus, expression (18) can be written as

σαβ = − 1

V
∑
{i, j}

Fi j
α r i j

β . (20)

A physical interpretation of this expression can be given as follows: when we apply a
deformation ηαβ , the distance r i j changes by r i j

β ηαβ in the direction xα. The partial force F i j

should oppose this displacement and does work Fi j
α r i j

β ηαβ . Then, summing over all pairs of
atoms, the change of energy is

�E = −
∑
(αβ)

∑
{i, j}

Fi j
α r i j

β ηαβ (21)

which should be equal to the first term of the expansion (11), i.e. Vσαβηαβ .
As a stress is defined in terms of the variation of energy of a certain volume, a local stress

has to be associated with a given volume. More precisely, if we want to calculate the stress on
a part of a system (a monolayer or an atom), we have to define, the volume V of this part. Then
we can extend the same argument we have developed for the total solid for this volume V .

When a strain ηαβ is applied to the volumeV , the fraction pi j of the distance r i j included in
the volumeV changes by pi jr i j

β ηαβ in the direction xα. The force F i j opposes this displacement

and thus does the work −Fi j
α pi jr i j

β ηαβ .
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Summing over all pairs whose fraction pi j varies, the energy variation due to the strain ηαβ

applied on the volume V is

�E = −
∑
(αβ)

∑
{i, j}

pi j Fi j
α r i j

β ηαβ . (22)

The local stress σαβ(V) we want to introduce should verify

�E = V
∑
(αβ)

σαβ(V)ηαβ. (23)

Thus the stress σαβ(V) of the volume V is defined as

σαβ(V) = − 1

V
∑
{i, j}

Fi j
α pi jr i j

β (24)

where pi j is the fraction of the length of the bond {i, j} included in the volume V . Three kinds
of intersections between a bond and a convex volume exist:

(i) bonds completely included in the volume between two atoms inside the volume;
(ii) bonds between an atom in the volume and another one outside;

(iii) bonds between two atoms outside the volume.

Thus the algorithm to compute the internal stress at atomic level is the following:

(i) We choose to associate with each atom a domain corresponding to its Voronoı̈ cell. The
Voronoı̈ cell decomposition [15] is a unambiguous way to partition space and to assign a
reasonable volume to each atomic position. Other possibilities exist to define precisely an
atomic volume [16]. In this paper, we will group together the individual atomic volumes
to form layer volumes and compute their stresses. Using another partition should give
qualitatively the same results.

(ii) The intersections are calculated between each atomic volume and all bonds of the system.
(iii) The partial forces between atoms are calculated and finally the local stress tensor σi for

each atom i is computed using equation (24).

Using this algorithm, for Au/Ni multilayers for instance, we are able to calculate the layer
and the interfacial stresses by summing the individual atomic contributions of each monolayer.

2.5. Elastic stiffness matrix B

To be stable, a crystal should satisfy some stability criteria. For a cubic crystal the three
stability criteria [17] are

C11 + 2C12 > 0, C44 > 0, C11 − C12 > 0. (25)

The first relation corresponds to the bulk modulus B = (C11 +2C12)/3 and the second and
third ones correspond to shear constants, but these three criteria are only valid for an unstressed
cubic system. Wallace [5, 18] has generalized these conditions for non-zero stresses by defining
the coefficients of stiffness BI J .

Let us take a crystal that is already constrained at the configuration X0. If a strain ηγδ is
added to this crystal, its configuration changes from X0 to X. The elastic stiffness matrix B
is defined by

Bαβγ δ(X0) ≡
[
∂σαβ(X)

∂ηγδ

]
X0

. (26)
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Figure 1. Tetragonal cell of Ni showing symmetries of the system and the components of the stress
tensor σ.

B represents the second derivatives of the enthalpy. Therefore the system is stable if the
matrix B is positive definite, i.e. all its eigenvalues are positive. The expression for B [5] is
then

Bαβγ δ = Cαβγ δ + 1
2 [σαδ(X0)δβ,γ + σβδ(X0)δα,γ

+ σαγ (X0)δβ,δ + σβγ (X0)δα,δ − 2σαβ(X0)δγ,δ] (27)

where Cαβγ δ are elastic constant coefficients defined by

Cαβγ δ ≡
[

1

V (X)

∂2 E(X)

∂ηαβ∂ηγδ

]
X0

. (28)

Equation (27) shows that B depends explicitly on the stresses of the crystal at
configuration X0, which is equal to the external stresses. In the general case, B has a different
symmetry than the C symmetry. At zero stress, the elastic stiffness matrix B is identical to
the elastic constant matrix C.

3. Stability criteria of biaxially strained fcc Ni

Now, we apply the calculation of B for a biaxially strained fcc Ni structure.
For a biaxial strain along the x and y axes, the stress tensor σ (see figure 1) is given by

σ =
( s 0 0

0 s 0
0 0 0

)
. (29)

In this case, a strained fcc lattice can be described as a face-centred tetragonal (fct) lattice
with the same axis system although the corresponding Bravais lattice is actually the bct one.
Our initial structure being fcc, we keep the fcc axes for the distorted structure. So, in the
following calculation, we consider a fct cell of Ni, called fct Ni. Because of the fct symmetry,
the non-zero elastic constants of fct Ni are

C11 = C22; C33; C13

C12 = C23; C44; C66.
(30)
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Using equations (27) and (29), the elastic stiffness matrix B is given by

B =




C11 + s C12 − s C13 − s
C12 − s C11 + s C13 − s 0

C13 C13 C33

C44 + 1
2 s

0 C44 + 1
2 s

C66 + s


 . (31)

3.1. Eigenvalues of B

The structure of the tetragonal Ni is stable if the matrix B is positive definite, i.e. all its
eigenvalues Mr are positive. There are five eigenvalues, M1 being a double eigenvalue:

M1 = 1
2 (2C44 + s)

M2 = C66 + s

M3 = C11 − C12 + 2s

M4 = 1
2

[
C11 + C12 + C33

−
√

(C11 + C12 + C33)
2 + 4(2C13

2 − C11C33 − C12C33 − 2C13s)

]

M5 = 1
2

[
C11 + C12 + C33

+
√

(C11 + C12 + C33)
2 + 4(2C13

2 − C11C33 − C12C33 − 2C13s)

]

(32)

M4 is positive if the second factor in the square root is negative. M5 is always greater
than M4. Therefore, we can write four stability criteria obtained from C1 to C4, respectively:

C1 : 2C44 + s > 0 (33)

C2 : C66 + s > 0 (34)

C3 : C11 − C12 + 2s > 0 (35)

C4 : C33(C11 + C12) − 2C13(C13 − s) > 0. (36)

Note that Cαβ are the elastic constants of the strained system and not of the initial unstrained
crystal.

We now determine numerically the values where the stability criteria fail. As an
application, we will apply this to the Ni/Au system where the strain applied to the Ni by
the Au substrate is 15.6%. We plot, in figure 2, the values corresponding to the four stability
criteria of fct Ni in tension as a function of the imposed biaxial strain up to 20%. In the range
[0, 20%], two criteria can fail.

The stability criterion C4 (36) starts to fail at a biaxial strain of 5.74% and corresponds
to the vanishing of the eigenvalue M4. The criterion C2 (34) fails at a strain of 10.65%, and
corresponds to the vanishing of M2.

The discontinuity in the slope of M4 at 7.5% is due to interatomic distances reaching the
cut-off radius rc of the interatomic potential. The first and second derivatives of the potential [1]
are continuous, but not the third derivative at the point rc.

3.2. Eigenvectors of B

Each instability corresponds to a spontaneous deformation that are given by the six eigenvectors
of the matrix B. The strain eigenvectors corresponding to the double degenerate eigenvalueM1
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Figure 2. Curves of four stability criteria in GPa of fct Ni strained biaxially as a function of
imposed strain (in per cent of linear deformation of a Ni cell).

are the η4 and η5 shear strains. The eigenvector L2 of M2 is the η6 = ηxy shear strain in the
plane of subjected biaxial strain. The fourth eigenvector corresponding to M3 is

L3 =
(

η 0 0
0 −η 0
0 0 0

)
. (37)

The last two other eigenvectors are more complicated. If we define

A1 =
√

(C11 + C12 − C33)
2 + 8 C13(C13 − s)

A2 = (C12 − s)

A3 = A2(C33 − C11 − C12) − 2 C13 (C13 − s)

A4 = (C11 − 3 C12 − C33 + 4 s + A1)

and define two other quantities

U = A3

C13A4
; V = A1A2

C13A4

then we can write both eigenvectors L4 and L5:

L4,5 =
(U ± V 0 0

0 U ± V 0
0 0 1

)
. (38)

In figure 3 are shown the two spontaneous distortions L2 and L4. The strain L4 preserves
the tetragonal symmetry. We have two possible variants as structures: a tetragonal structure
with a larger lattice constant on the z axis than the average strain, and another one with a larger
lattice constant parallel to the xy plane. The strain L2 breaks the tetragonal symmetry and
leads to four variants (see figure 3).

The tetragonal cell can be sheared along the direction x (two structures) or along the
direction y (two others). This shear can lead to a fcc[011] structure. Nevertheless, the hcp,
ffc[011] and 4H structures can be obtained by applying inhomogeneous shears of this type
(see figure 4). The stability criteria can find the instability zones, but cannot predict what the
final stable structure should be in these zones.



1822 T Deutsch and F Lançon

=

Figure 3. Strains L4 and L2 which give an unstable Ni centred tetragonal. We represent two
possible structures for L4 and four possible structures for L2.

Figure 4. Hexagonal phases built from an inhomogeneous shear of (200) planes of the fct cell. The
atoms denoted by grey circles are shifted by a/2 below or above the plane of the figure, a being
the corresponding lattice constant.

3.3. Discussion

A structure is unstable along a deformation Lε if all forces on atoms are equal to zero but
its energy is not a minimum for the strain Lε . This structure spontaneously undergoes strain
along Lε .

From figure 2, we can distinguish four domains where the fct Ni structure is:

• stable for the domain D1 − [0–5.74%];
• unstable along the strain L4 for the domain D2 − [5.74–10.65%];
• unstable along the strains L4 and L2 for the domain D3 − [10.65–14.09%];
• unstable along the strain L2 for the domain D4 − [14.09– · · ·].
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These stability criteria enable the prediction of possible commensurate structure domains
for Ni when it is epitaxied on a substrate that imposes a given strain.

Thus, for a strain less than 5.74% (domain D1), Ni stays bct, i.e. a bct nickel can grow
without instability on a [001] surface of a substrate that induces a misfit less than 5.74%. Above
a certain film thickness, it is obvious that dislocations or other defects will appear in order to
decrease the stresses within the Ni layer, but these defects do not correspond to a spontaneous
deformation of the cell.

For a deformation between 5.74 and 10.65% (domain D2), bct Ni is unstable along a
deformation L4. The system prefers to create domains in which Ni relaxes towards its lattice
parameter. The resulting structure is not commensurate with the substrate.

For a deformation between 10.65 and 14.09% (domain D3), both instabilities L2 and L4

are present.
Finally, for a deformation larger than 14.09% (domain D4), which is the case of Ni on

an Au(001) substrate (15.6%), the Ni layer stays commensurate with the average deformation
imposed by the substrate. It undergoes an inhomogeneous shear towards a hexagonal structure
(see figure 3). The D4 domain contains Ni structures close to the unstrained fcc[011] that can
be obtained with a strain of 15.8% in one direction and 21.6% in the other one. The same
behaviour is predicted for Ni on Ag(001) substrate since the resulting strain is 15.77%.

To sum up, we have shown that Ni epitaxied on a fcc(001) substrate is commensurate for
a strain less than 5.74% or for a strain larger than 14.09%. Then Ni adopts, respectively, a bct
structure or a hexagonal structure. Between these strain values, epitaxied Ni is incommensurate
with the substrate.

4. Stresses at the Au(001)/Ni interface

While defining the stability criteria in the section 3, the influence of interfaces has not been
considered, i.e. we have assumed that a Ni layer between two Au films is only subjected to a
uniform biaxial stress:

• σxx = σyy = s;
• σzz = 0;
• shear stresses σxy , σxz and σyz are equal to zero.

We have calculated the local stress tensor (equation (24)) of each monolayer in the case of
Au(001)/n × Ni/Au(001) multilayers. The shear stresses σxy(i), σxz(i) and σyz(i) are equal
to zero for each monolayer i . The local uniaxial stresses σxx (i), σyy(i) and σzz(i) vary strongly
in the vicinity of Au/Ni interfaces. As expected, their average values across the film, σxx and
σyy , are equal to s and the average σzz is equal to 0. In these calculations, the Au/Ni interfaces
are assumed to be sharp with no mixing between Au and Ni and the Au thickness is much
larger than the Ni thicknesses.

The distribution of the stress σzz(i) has been calculated for different Ni thicknesses.
Figure 5(c) shows this profile for multilayers from 2–16 Ni monolayers. The interfacial
stresses extend into the two layers of Ni and Au on either side of the interface. These profiles
have oscillations (a positive stress corresponds to volumes under tension and a negative stress
to compression). These oscillations have the same physical origin as the oscillations of the
interlayer distances at a surface or at a interface.

Figure 5(c) shows that the Au planes at the interfaces are stretched along the z axis whereas
the first Ni plane is squeezed. This can be predicted with the following simple argument: the
Ni layer in contact with an Au substrate is under lateral tension. Therefore it strongly contracts
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(a)

(b)

(c)

Figure 5. Curve of local stresses σxx (a), σyy (b) and σzz (c) for Au/Ni multilayers made up with
2, 4, 6, 8, 10, 12 and 16 Ni monolayers calculated for each monolayer. Ni planes are numbered
from 11 to 26. Only one interface is presented except for the multilayer with 16 Ni monolayers.
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Figure 6. Curves of stresses σxx , σyy and σzz in GPa applied on a Ni layer of Au/Ni multilayers as
a function of Ni thickness.

in the z direction (Poisson relation). As the average stress σzz should be equal to 0, the Au
planes are under tension.

Although there are strong oscillations of σzz(i), an important result is that the profile of
stresses per monolayer across the film is mostly independent of Ni layer thickness. The profile
shape is conserved even if the system undergoes a structural transition at n = 5.

The transition is associated with a change to the lateral stress in Ni (see figure 5): it is
extended in the bct structure identically in the x and y directions and in compression mostly
in the x direction in the hexagonal state. However, as for the z direction, the y profile close to
the interface is not affected significantly.

At 8 Ni monolayers, the local stresses in the middle of the Ni film tend to constant values:
0 for σzz(i), about −1 GPa for σyy(i) and about −8 GPa for σxx . This is coherent with the fact
that solids can be more easily dilated than compressed: while for the 15.6% dilation of the
bct the stress is 7.42 GPa, whereas for a lower 6% compression of the hexagonal, the value is
−8 GPa. Compressions give larger stress values than dilations. In figure 5(b), the dip of the
stress for σyy(i) could be the sign that twin dislocations should appear for a larger thickness
in order to relax the stress.

Figure 6 gives the average stresses σxx , σyy and σzz of the whole Ni layer, i.e. the calculated
stresses are averaged over all the Ni monolayers. The sign of σxx changes at five monolayers,
where the structural transformation occurs. Along this direction, Ni is stretched for a thickness
less than five monolayers and becomes compressed for a larger thickness. This stress could
induced an enhancement of the Ni magnetic moment but the presence of non-magnetic atoms
(Au) at the interface should cancel this effect [19].

5. Conclusion

In this paper, we have introduced stability criteria for a strained material. We have also given
new formulae for the stresses in any volume of a solid up to the atomic level.

We have applied these criteria to predict the stability domains of Ni on fcc(001) substrates.
These criteria can define commensurate growth domains of one structure on another. We have
shown that, for epitaxy on Au, the pseudomorphic body-tetragonal structure is unstable with
respect to a shear cell parallel to the interface. This shear gives a hexagonal structure in good
agreement with experimental results [20, 21]. This general approach could be applied to other
systems.
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The local stresses have been introduced following Lutsko’s formalism [12] and we have
used them to calculate the stress profiles in Au/Ni multilayers. Applying local stresses to
the interfaces or to the surfaces with terraces and kinks or interfaces would give some useful
information about the elasticity at the atomic level.
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